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J. Phys. A: Math. Gen. 15 (1982) 1487-1493. Printed in Great Britain 

Lattice sums for semiclassical Coulomb systems in periodic 
boundary conditions 

John W Perramt and Simon W de Leeuw 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 8 October 1981 

Abstract. Effective semiclassical potentials for the Coulomb interaction in two and three 
dimensions are calculated according to the prescription of Feynman and Hibbs. For these 
potentials, the Ewald transformation is obtained for the semiclassical Hamiltonian of a 
periodic array constructed from a unit cell containing a neutral assembly of charged 
particles. 

In  this note, we address the problem of deriving approximate Hamiltonians for the 
computer simulation of semiclassical Coulomb systems in two and three dimensions. 
To this end, we push aside the question of quantum dynamical effects, and focus on 
quantum corrections to equilibrium properties, using the path integral formulation of 
quantum statistical mechanics (Feynman and Hibbs 1964). The most useful result 
here is that if the interatomic potential between two particles is.d(x), then quantum 
effects may be approximated by calculating the classical partition function using the 
renormalised potential V ( x )  given by 

where 

A = 6mkBT/h2 ( 2 )  
is the inverse square of the thermal wavelength. Equation ( l ) ,  when expanded in 
powers of hV2,  agrees to second order with the more usual Wigner-Kirkwood 
expansion. Most investigations of these renormalised potentials V ( x )  have been for 
one-dimensional systems. We note that V ( x )  defined by equation (1) only exists if 
4 ( x )  does not diverge faster than I x I - ~ + ‘ ,  E > 0 as x + 0. The generalisation of equation 
(1) to higher dimensionality is straightforward. If 4 (Irl) is the classical potential, the 
renormalised V(lr1) in d-space is 

In particular, V(lr1) exists for the Coulomb potentials 

W) = q2/lrl 
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and 

@(lrO = -q2 log(lrl) 

in three and two dimensions respectively. 
For the purposes of computer simulation of systems acting t..rough long-ranged 

potentials such as equation (4) it is necessary to calculate rapidly the potential energy 
UN of N particles at positions r lr  r 2 , .  . . , rN with charges Zlq, Zzq, . . . , Z d  within a 
d-dimensional cube of side I ,  this cube being repeated regularly throughout space. 
That is, we require to calculate the lattice sum 

where the sum is over all d-dimensional lattice vectors nl, the term n = 0 being omitted 
if a = p .  Equation ( 5 )  exists as a conditionally convergent series if the system is 
neutral, i.e. if 

cz*=o. (6) 
a 

We return to the computation of equation ( 5 )  after we have computed equation (3) 
for the potentials (4a, b) .  We begin with the three-dimensional case (4a). We have, 
setting Irl= r, lyj = y, etc, 

V(r) = ( A / T ) .  3/2  q 2 1 Ir +yj-' exp(-Ay2) dy 
J 

= ( A / r ) ' 1 2 q 2  I Is/-' exp[-A(r2 - 2s * r +s2)] ds. (7) 

To perform the integral over s we transform to a set of polar coordinates with the s, 
axis parallel to r. Then after some straightforward manipulations, we find 

V(IrI) = q 2  er f ( i r I4 / I r I  (8) 

where erf(x) is the usual error function (Abramowitz and Stegun 19641, defined by 

erf(x) = = exp(-u2) du. 
Jr I' n 

(9) 

Equation (8) has a couple of interesting properties. Firstly, V(lr1) is finite as Irl-* 0, 
tending to the value 2q2(A/~)1 /2 .  Secondly, we recover the classical potential (4a)  
as A + CO (either T + CO or h -* 0 according to taste), but for large values of A ,  equation 
(8) possesses only an asymptotic expansion. Thirdly, a slight change of variable in 
equations (8) and (9) enables us to write V(lr1) as 

V(lr1) = I* t-"2 exp(-tr2) dt 
Jr r  0 

to which form we return after studying the two-dimensional case (46). For this 

V(lrl)= - q 2 ( A / r r )  log(lsl)exp[-A(s2-2s r + r 2 ) ] d s  (11) I 



Lattice sums for semiclassical Coulomb systems 1489 

which, after changing to polar coordinates with the sx axis lying parallel to r, becomes 

= -2Aq2 exp(-hr2) s ds log(s) exp(-As2)lo(2hsr) (12) loa 
where IO(Z) is the modified Bessel function. This integral, or any simple transformed 
form of it, does not seem to be tabulated. To reduce it to a standard function, we 
set U = s2  and write V(lr1) as 

V(lr 1) = - h q 2  exp(-Ar2) log(u) du exp(-Au)lo(2hr&). (13) 

As the series expansion 
W 

l o ( 2 A r J u )  = 1 (Ar)2nu"/(n!)2 
n = O  

is uniformly and absolutely convergent for any U, we may substitute (14) into (13) 
and integrate term by term, using the standard Laplace transform (Erdelyi et a1 1954) 

loz U" log(u) e-*' du = -A-'(log A + y), ( 1 5 ~ )  n = 0 ,  

=A-'-'n!( k = l  k - I - logh-y) ,  n = 1 , 2 , .  . . , ( 1 5 6 )  

where y is the Euler constant. We now write 

noting that if we agree to define 
also holds for n = 0 and equation (15a) becomes superfluous. Then 

k-I to be zero for n = 0, equation (16) 

V(lr  1 )  = - iq2 exp(-hr') 1 7 (Ar2)"(lo1 l - ( ; - t ) "  d t - logh-y ) .  (17)  
,,=o n .  

We now interchange the orders of summation and integration to obtain 

1 - exp(-hr2t) 
d t - log h - y ) . 

This step may be justified by either expanding equations (13) and (18) in powers of 
(Ar') and comparing coefficients or by inserting E for zero in the lower limit of equation 
(16) and using the principle of analytic continuation. It now remains to set U = Ar2t 
in equation (18) and recognise that 

where E l ( x )  
thus find for 

1)' t - ' ( l  - e - ' )  dt = E l ( x )  +log x + y 

is the exponential integral function (Abramowitz and Stegun 1964). We 
V(lr1) the form 

(19) V(IrI) = -&2[log(Ir12) + EI(A Ir12)I. 
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We note that, in passing, we have derived the Laplace transform 

lom du log U e-'"Zdp&) = p - l  exp(p2/4p)[1og(p2/4p)+E~(p2/4p)]. (20) 

To see that equation (19) tends to a finite value as lrl+ 0, we use the expansion 

E1(z )=-y - logz+O(z )  

to find 

lim V(r) = t q 2 ( y  +log A ) .  (21) 
r-O 

To put equation (19) in a form suitable for carrying out the lattice sum ( 5 ) ,  we use 
the identity (Perram and de Leeuw 1981) 

and rewrite the exponential integral in equation (19) as 

El(Ar2) = IAm t - '  dt  exp(-r2t). 

We further note that the charges at r l ,  , . . , f N  interact with themselves with an energy 
N 

USELF = tq2 ( 21) (7 + log A )  

which is finite and may thus be included in the lattice sum ( 5 ) .  We thus have 

a = l  

N N  U N - 2 U S E L F + : C  - 1  1 ZuzpV(lfu-fp+nll) 
n a = l  @ = I  

A N  N 

= as2 ( 1 2:) ( y  + log A )  +:q2 1 zazpt-l exp[-t(r, - r, + n02] dt (22) 

where the sum is now over all lattice vectors n.  A similar lattice sum may be written 
for three-dimensional charges. We see that here 

u = 1  n 0 u = l p = l  

N 

USELF= 2 q ' ( A / ~ ) ~ / ~ (  a = l  1 z ? )  

so that, including self-energy terms, 

UN = q 2 ( A / r ) ' I 2 (  1 2:) + i q 2 ~ - ' / 2  1 1 
N N N  

Z , Z ~  loA tC1l2 dt  exp[-t(ra - r p  +n1)2] .  
a = l  n o = l  5 = l  

(23) 

Equations (22) and (23) are strikingly similar to the corresponding forms for classical 
lattice sums, the only difference being that the term n = 0 is included (which makes 
the calculation easier) and that the upper limits on the integrals are A instead of infinity. 

We now sketch the conversion of equations (22) and (23) into rapidly computable 
forms. We define U N ( s )  by replacing Xn by 2. exp(-sn2) in both cases, and also define 

2 u = t l ,  R, = ra/l. 
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Equations (22) and (23) then become 

in two dimensions, and 

2 
N N A ' 2  + 1  2 - 1  

2 q  1 x T T - 1 / 2 c  I z,zp exp[-uRUp -2un * Rap 
n a = 1 5 = 1  0 

-(U + s ) ~ I ~ ] u - ' / ~  du (25) 

The series in equations (24) and (25) are now absolutely and uniformly convergent 
in three. 

for Re(s) > 0. We now use the identity 

( u + s ) n 2 + 2 u n  * R = ( u + s )  (26) 

and the d-dimensional form of the Poisson summation formula applied to the gaussian 
function, namely 

d / 2  

exp[-v(n + s ) 2 ~  = (z) exp(-x2n2/v +2xin  s) 
n n u  

which for small /vi converts a slowly convergent series into a rapidly convergent one. 
The sum over n may then be taken through the integral sign in equations (24) and 
(25), and, depending on the value of A12 (a point we return to in a moment), the 
integralsplitsintoonefromOtoaparameter v'plusonefrom v 2  toA12. Theoptimalvalue 
of v2  is about x, since both series in equation (27) are approximately equally rapidly 
convergent for v = x. Of course, if h l z  < x, no such splitting is necessary. Assuming 
A '  > T,  the integrals from v to A 1 2  may be expressed without further ado as rapidly 
convergent series of exponential integrals and error functions respectively. The 
transformation (27) is applied to the integrals from 0 to v2 .  The relevant parts of 
equations (24) and (25) are after transformation 

x exp[ -usR $/( u + s) - x2n */(U + s) + 27riun Rap/(u + s 11 (28) 

and, in three dimensions, 

x exp[-usR $/(U + s) - r 2 n  '/(U + s )  + 2xiun * Rap/(u +SI]. (29) 
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For n = 0, the integrals in equations (28) and (29) are divergent as s + O .  This 
divergence is a consequence of the long-range nature of the Coulomb interactions. 
By making an asymptotic expansion in powers of s it is straightforward to show that 
the divergent terms vanish because of charge neutrality. The n = 0 term in equation 
(28) is 

We now note that, for k 3 1, 

the equality holding for k = 1. For k = 0 we have 

rq2 N "' du 
4 a = l @ = l  u + s  
- c c zaz@j-o -=o (32) 

because of the charge neutrality condition equation (6). Thus the n = O  term in 
equation (28) becomes 

where in the last step we have used the charge neutrality condition again. We may 
now take the limit s -+ 0. Equation (28) then becomes 

Similarly the n = 0 term in equation (29) yields 

U +s)  

N N  du 

so that equation (29) gives 

2 z ,  exp(27rin * R,) 
n = 1  n t O  n 

For sufficiently low temperatures, it is possible that A I 2  S T. In this event 

UN(())= Uk(0) 

with v 2  in equations (30) and (31) being replaced by A 1 2 .  This has practical implications 
for the computer simulation of the system. This is because the only places where the 
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coordinates occur in equations (33) and (35) are in the terms 
N 1 z ,  exp(2win - R,) 

a = l  

which means that the effective Hamiltonian may be expressed as one-particle sums. 
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